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A solution of the problem is proposed by an integral method. The results of a 
computation of trajectories, axial velocity, and jet boundaries by the method 
proposed for different expulsion angles agree with the test data. 

Many papers that contain attempts to determine theoretically the characteristics of 
a circular jet in a transverse flow are known in the literature. This is associated with 
the extensive utilization of such jets in practice. A major part of these investigations 
is devoted to determining the jet trajectories (see [I]). Other jet characteristics are 
also determined in a number of papers (for instance, [2, 3]) by using modeling of circular 
jet development in a transverse flow by the development of vortex pairs since vortex motion 
is detected in tests in transverse jet sections, seemingly two vortices rotating in oppo- 
site directions. It must be noted that this approach permits giving qualitative more often 
than quantitative descriptions of the flow in the jet. Attempts at numerical integration 
of the motion and continuity equations for a three-dimensional flow [4, 5] show the possi- 
bility, in principle, of obtaining a computed flow pattern in the jet being developed in 
the transverse stream, that is qualitatively and to a certain degree quantitatively in 
agreement with test for a set of empirical constants usual for jet flows in a k - e model 
of turbulence [4] or under an assumption on the constancy of the turbulent viscosity co- 
efficient [5]. Qualitative agreement between the computed and test flow patterns is ob- 
tained for a numerical integration of the Navier-Stokes equations in [6] in application to 
jet system outflow into a stalling stream bounded by channel walls under the assumption of 
flow laminarity. 

The significant disagreement with test obtained in [4, 5] is visibly associated with 
the fact that the flow singularities at the nozzle exit and on the underlying surface 
around the jet that were detected in tests were not taken into account in giving the bound- 
ary conditions (see [7, 8], say). It must be emphasized that the influence of the stalling 
flow on the flow in the jet is detected in tests [8] not only at the nozzle exit but even 
within the nozzle. 

Such an exact assignment of the characteristics is not required in solving the problem 
by an integral method. Satisfaction of the conditions "in the mean" is necessary since all 
the flow characteristics enter the equations under the integral sign. In this connection, 
there are attempts in the literature to determine circular jet characteristics in a stalling 
flow by integral methods (see [9, I0], say). In our opinion, analysis of these interesting 
researches is contained in [ii]. It must be noted that the formulas in [9] permit determina- 
tion just of the trajectory and axial velocity of the jet, require a significantly greater 
set of empirical constants here, and do not afford a passage to the limit to the ordinary 
submerged jet. The jet mass-flow characteristics do not agree with the test data. 

The computed method [i0] yields a better qualitative description of the flow pattern 
in the jet (including the isotach). However, the computed jet velocity and mass-flow char- 
acteristics profiles differ significantly from tests which is visibly associated with the 
fact that a number of assumptions and primarily the assumption about the ejection capacity 
of the jet in a stalling flow contracts the tests data. 

A flow model in a circular jet in a transverse flow is proposed in [12] on the basis 
of experimental data known in the literature and the solution of the problem of the initial 
section of such a jet by an integral method is examined. It is here considered that the 
flow singularities in a circular jet in a stalling flow that are known from tests are re- 
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lated to the stalling flow velocity component normal to the jet trajectory. It is assumed 
that this velocity component is proportional to the rate of change of the jet boundaries in 
the plane of symmetry and in the lateral direction resulting in deformation of the jet trans- 
verse section, and additional fluid mass flow ejectable from the surrounding space as com- 
pared with the submerged jet or a jet in a coflow. On the basis of this model, the solution 
of the problem of the main section of a circular jet in a transverse flow by an integral 
method is examined. 

It must again be emphasized that utilization of an integral method in contrast to a 
numerical method permits "smoothing out" inaccuracies that originate upon replacement of the 
real substantially nonuniform velocity and pressure fields at the nozzle exit by uniform 
fields because these quantities enter under the integral sign. The solution of problems 
about the initial and main sections by using the physical flow model proposed in [12] per- 
mits a comparatively simple through-computation of the characteristics of a jet from the noz- 
zle exit. 

Let the jet emerge at an angle to the unlimited stream. Under the effect of the stall- 
ing flow the jet is curved and at a large distance from the nozzle exit its direction ap- 
proaches the direction of the stalling flow. In conformity with the plane sections hypoth- 
esis it can be considered that the jet is developed in a flow of variable entanglement 

cos ~ ( l )  
U0 U 0 

and a r o u n d  e a c h  o f  i t s  s e c t i o n s  goes  a f l o w  o f  v e l o c i t y  n o r m a l  t o  t h e  j e t  t r a j e c t o r y  

V ~  : V.  sin~. (2 )  

I f  t h e  e q u a t i o n  o f  t h e  j e t  t r a j e c t o r y  X = f (Y)  i s  known, t h e n  t h e  q u a n t i t i e s  s i n a  and 
c o s a  a r e  e a s i l y  d e t e r m i n e d  by means o f  known f o r m u l a s  [ 1 3 ] .  When s o l v i n g  t h e  p r o b l e m  a b o u t  
the main jet section, just as in the initial section we will consider the lines of equal 
velocities, meaning the transverse jet section also to have the shape of an ellipse. Analy- 
sis of experimental data showed that in the jet section where one velocity maximum still 
exists, on the axis, the velocity profiles in jet radial sections are described completely 
satisfactorily by the Schlichting formula despite the fact that the jet edges in the main 
section are stalled all the more by the flow with distance from the nozzle exit and the 
section is transformed from elliptical into horseshoe-shaped. This affords a foundation for 
solving problems about the jet main section also by using an integral method. However, in 
contrast to the solution of the problem about the initial section it is already impossible 
to neglect the pressure change along the jet trajectory and it must be taken into account 
that the stalling flow velocity component directed along the jet trajectory is variable. 

We will consider that the mean rarefaction over the section in the jet is proportional 
to the velocity head of the stalling flowvelocity component normal to the jet trajectory 
since, as was noted above, it "corresponds" to the pressure on the jet contour, meaning the 
mean pressure in its section which should be below atmospheric since a reducedpressure exists 
on the major portion of the jet contour. Then 

P _ P= ~2__Vi" (3 )  
P P 2 

Since we consider the velocity profiles known, then it is necessary to find the veloc- 
ity change along the jet axis and halfwidth in the plane of symmetry and in the lateral di- 
rection for a complete description of the flow pattern. To determine these quantities we 
use the integral equation of momentum, the mass flow rate equation, and the equation of 
lateral broadening of the jet [12]: 

~12 r6(9) 

dx o b P "o 6 o 
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It is considered in (5) that the fluid flow rate through the jet transverse section is com- 
prised of the initial mass flow, the mass flow ejected by an ordinary jet in the co-flow, 
and an additional mass flow coming into the jet at the section between the nozzle exit and 
the given section because of the formation of an additional mixing zone. 

In conformity with the flow model proposed in [12], this additional mass flow is deter- 
mined by the formula 

Qadd , Qaddi ~ V| x 
- 2 ~ . o d  + - -  ~" 6~ ~in ~ a~. 2au0r~ Uo ~ (7)  

x i 

The mass f l ow  e j e c t e d  by t h e  j e t  in  t h e  c o - f l o w  can be d e t e r m i n e d  e i t h e r  by u s i n g  6 (o )  
and Um(~ found  from t h e  known s o l u t i o n  [1] o r  by u s i n g  t h e  s o l u t i o n  o f  t h e  p rob lem by t h e  
i n t e g r a l  method,  in  c o n f o r m i t y  w i t h  which  t h e  c o n s e r v a t i o n  e q u a t i o n s  o f  t he  e x c e s s  j e t  momen- 
tum and t h e  m a s s - f l o w  e q u a t i o n  a r e  u s e d  t o  d e t e r m i n e  t h e  a x i a l  v e l o c i t y  and r a d i u s  o f  t h e  
j e t .  I t  can be c o n s i d e r e d  h e r e  t h a t  t h e  mass f l ow  change in  t h e  main s e c t i o n  of  t h e  j e t  
is proportional to the jet excess axial velocity and radius while the proportionality factor 
is determined from test. In conformity with this representation, the magnitude of the mass 
flow ejected by the jet into the co-flow equals 

- 9 - -  qo q t  u,n u~ 
2nrSuo v t s i n a  Uo uo , (8 )  
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V ~  x + (0,27--  0,079m~) c. - - .  + -  x a , 
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x t 

.I "~ (lO) 
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It is considered here that the axial velocity in the transition section equals the jet out- 
flow velocity. 

We give the velocity profile in (4) and (5) by using the Schlichting formula 

u--ua -- (1--~la/2) z, ~1 = r/r~(@. (11)  
U m - -  116 

After some manipulations, the combined solution of (4)-(6) yields 

(F~ + 4 - ~  ( x ) ) ' / 2 - - F  1 
s 

um =7,5(A + V A 2 +  0,267B), 6v= 2 ' ( i2) 

A = 0,1286T~ + 0,0049 u--!~, 
t~ o 

B = (0,371Tt + 0,0619 % ) ,  
U0 

V x I V =  e~ ] r t =  6-u:t~tftr+ I~ It =-u~-fsin~& .cos~+0,1286 um 40,3714 V= ' = . ~ - - ~ c o s ~  ~'(x)dx, ( 1 3 )  
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6 ~ = 6 v + F i ( x ) ,  F l ( x ) = 8 ~ i - - 6 u i + 2 e  V= ~ sinO~dx 
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Yt 

1~= i x V'] + x '2 (r) aY, (15) 

(16) 6~.6~1", = qD(x), f2 =0,1286 -u~ +0,3714 u__~. 
Uo U o 

The system (12)-(16) was solved on an electronic computer by successive approximation. 
The quantity ~ was here determined from the jet trajectory equation being given in the form 
of a third degree polynomial X = f(Y), whose coefficients were found from conditions at the 
nozzle exit (the trajector issues from a given point at a given angle to the flow and its 
radius of curvature is such that the transverse equilibrium condition u02/R0 = (ap/an)/p is 
satisfied in the plane of symmetry) and contained an additional constant which was determined 
from a comparison with test [14] for m = 0.i at one point X/r 0 = 50. 

Consequently, the jet trajectory takes the form 

X = ctg aoY + mz (1 -t- Ap) y 2 +  0,168m s (l -[- Ap)312y 3. ( 17 ) 
8 sin~ao 

As mentioned above, it must be noted that a large number of papers (see [i, 9, 15-18], 
say) is devoted to determining the trajectory of a circular jet in a transverse flow, in 
which the jet trajectory was determined, as a rule, by using a differential equation ob- 
tained from the equilibrium condition of all the forces acting on a jet element and certain 
assumptions. Taking account of the comparative awkwardness of these solutions and the need 
for a more simple description, if possible, of the jet trajectory in a broad range of geome- 
tric and mode parameters, it is deemed expedient to determine the trajectory in the form 
(17) .  

Compared in Fig. la are the computed jet trajectories with tests for s 0 = 90 ~ and for 
different magnitudes of the ratio between the stalling flow and jet velocities. It is seen 
from the figure that agreement between the computed curves and the experimental data is 
completely satisfactory in the whole investigated range of variation of the quantity m. 

Computed jet trajectories determined by means of (17) for different blowing angles and 
m = 0.I are compared with test data [14] in Fig. lb. It is seen that the proposed formula 
describes the jet trajectory satisfactorily even for different blowing angles. 

The computed curves Um/U 0 are compared in Fig. 2a with test data [7, 14-16, 20-22] and 
new data of the authors obtained during an investigation of the main section of a circular 
jet in a stalling flow (the experimental set-up and method of conducting the experiment are 
analogous to those described in [7]). 

It is seen from Fig. 2b that the agreement between computations by the method cited 
aboveand exPeriment is better than the computations executed in [4]. 

Y/ o /~".>'>~=o, o - i 

I l a  / / I " -  ' ~ - Z  b 3 

�9 _ ,  

O 5O /00 -5O 0 50 tO0 X/~ 

Fig. i. Comparison of results of computing the jet trajec- 
tory with experiment: a) a0 = 90~ i, 2) m = 0.05; 3-6) 
0.i; 7, 8) 0.2; 9) 0.3; i0) 0.44; ii, 12) computation (2, 5, 
8 - data of [14]; 6 - [15]; 12 - [i]; i, 3, 4, 7, 9, i0, ii - 
data of the authors); b) m =0.I: i) s0 = 135~ 2) 120; 3) 90; 
4) 60; 5) 30~ points are data of [14], curves are computa- 
tion. 
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Fig. 2. Comparison of the results of computing the jet axial 
velocity with experiment (s 0 = 90~ a) 1-3) m = 0.3; 4-8) 
0.i; 9-12) 0.05 (i, 4, 9 - data of [7]; 6, i0, ii - [14]; 7 - 
[15]; 3 - [16]; 2, 5 - [20]; 8 - [21]; 12 - [22]); b) m = 
0.25: i) data of [19]; 2) [4]; 3) data of the authors. 

u.VooC0s0c ~ ao x /  

0 25 60 75 o 

oX~ o - 1  

zo 20 soxl~. 

Fig. 3. Comparison of the results of computing the jet axial 
velocity with experiment for different blowing angles s0: a) 
s 0 < 90~ i) s 0 = 30~ 2) 60 (data of [14]); b) s 0 > 90~ 
i) s 0 = 120~ 2) 150 (data of [14]). 

" - - ~  ~ ~gqs. .-3 ~--6 ~ ,  " 
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0 I0 20 0 I0 20 x/x" o 

Fig. 4. Comparison of the results of computing the jet bound- 
ary with experiment: a: i, 2) m = 0.i (data of [7]); 3, 4) 
0.135 (data of[20]); curves are computation (m = 0.i); b: i, 
2) m = 0.3 (data of [7]); 3, 4) 0.28 (authors' data); 5, 6) 
0.333 (data of [20]); curves are computation (m = 0.3). 

Shown in Fig. 3 is a comparison of the computed axial velocity with test data of [14] 
for different blowing angles and m = 0.i. Let us note that in conformity with [Ii] it was 
assumed that u 6 = 0 in computations of the jet characteristics for blowing angles greater 
than 90 ~ on sections where the jet is developed in a counter flow (u6 < 0). 

A comparison is performed in Fig. 4 for the jet boundaries 6y and ~z" It is seen that 
agreement between the computed and experimental data is completely satisfactory. 

Therefore, the flow model proposed in [12] and the method of computation elucidated 
above permit description of the flow characteristics of a circular jet in a stalling flow 
even in the main section. 
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NOTATION 

c, cz, ci, clt, empirical constants; c I = 0.1286c, czt = 0.069 ci; m, ratio between the 
stalling flow and jet velocities; m S = us/u0; n, normal to the jet trajectory; p, static 
pressure; Pa, P0, static pressures directly before and after the jet; p~, static pressure in 
the flow far ahead of the jet; Q, mass flow rate; Q0, initial mass flow rate; qi = Qeji / 
2~u0r02 and qt = Qejt/2~u0r02, relative fluid flow rates ejected in the initial and transition 
sections; r 0, jet radius at the nozzle exit; R 0 radius of cUrvature of jet trajectoryat nozzle exit; 
rs(~), radius of the jet boundary; r, ~ , polar coordinates; u, longitudinal velocity compon- 
ent (in the direction of the jet trajectory); Um, us, velocities on the jet axis and on its 
boundary; u0, mean mass flow rate of the jet outflow; V~, stalling flow velocity; V~n, stall- 
ing flow velocity component normal to the jet trajectory; x, y, Cartesian coordinates asso- 
ciated with the jet trajectory; x, directed along the jet axis; y, perpendicular to x; Ylp', 
slope of the jet boundary at the end of the initial section; X, Y, Cartesian coordinates 
associated with the nozzle exit; X, directed along the stalling flow; Y, perpendicular to X; 
~, angle between the tangent to the jet trajectory and the stalling flow direction; s0, jet 
blowing angle; Ap = 2(p~ - p0)/pV~ 2 = i; 6y, 6 z, jet halfwidths in the plane of symmetry and 
in the transverse direction; e = 0.8, an empirical constant. Subscripts: i is for values 
of the quantities at the end of the initial section; and t at the end of the transition sec- 
tion. 
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